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Abstract 25 

This study optimizes an island energy-water microgrid using reinforcement learning (RL) to 26 

schedule the water system as a virtual battery. Using the microgrid in the Shoals Marine 27 

Laboratory as a testbed, a dynamic model simulating physical water and energy interactions 28 

was integrated with an RL algorithm to improve economic cost, sustainability, and reliability. 29 

The RL scenario outperformed the status quo, leading to a 7.04% improvement in the overall 30 

score. It also demonstrated superior cost and reliability outcomes compared to a single-31 

objective, heuristic management approach, though with a slight reduction in sustainability. 32 

The results show that the RL model strategically reserves battery storage for periods of peak 33 

renewable energy generation and extends water system operation to circumvent pumping 34 

constraints, effectively using the water system as a virtual battery. Increasing the desalination 35 

rate was found to further enhance performance across all metrics, while enlarging water tank 36 

capacity offered minimal advantages. 37 
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1. Introduction 44 

Microgrids have grown in popularity over the past decade as an alternative or complementary 45 

energy solution for communities and organizations in remote or isolated areas, or those 46 

seeking greater energy resilience and reliability [1], [2]. These small-scale, localized energy 47 

systems can function autonomously or in conjunction with the centralized grid [3], often 48 

incorporating renewable sources like solar and wind to improve sustainability and strengthen 49 

energy security. Currently, there are about 687 operational microgrids in the U.S., with a total 50 

capacity of 4.4 GW [4], and this number continues to grow [5]. Nevertheless, microgrids 51 

often require substantial energy storage capacity, which poses financial challenges for many 52 

communities due to the high costs involved [6]. Moreover, energy storage systems, 53 

particularly batteries, are limited by their finite charge-discharge cycles, and the variability of 54 

renewable energy sources further accelerates battery degradation over time [7]. To address 55 

these challenges, integrating water systems as "virtual batteries" into microgrids has gained 56 

traction [8]. This innovative approach leverages water treatment and storage processes to 57 

balance energy supply and demand, helping to mitigate the intermittency of renewable 58 

sources like solar and wind [9]. It is particularly advantageous in energy-intensive water 59 

supply applications, such as desalination. Despite the significant benefits of integrated 60 

energy-water microgrids, their effective management requires careful consideration of both 61 

energy and water supply and demand patterns to ensure their co-optimization.  62 

 63 

As the integration of water systems as "virtual batteries" into microgrid designs is an 64 

emerging concept, it has not been widely adopted or deeply explored in previous microgrid 65 

studies. For those studies that do consider the interaction between energy and water systems, 66 

the physical interactions are often modeled using coarse time steps [10]–[19]. This can 67 

oversimplify the dynamics between energy and water supplies and demands, leading to an 68 

incomplete representation of the system’s performance. Fine-grained time resolution is 69 

typically needed to fully capture the detailed balance of energy and water flows, especially in 70 

systems with variable renewable energy sources and fluctuating water demand. Furthermore, 71 

mixed integer linear and non-linear programming have been commonly used to co-optimize 72 

energy and water management strategies, typically focusing on objectives such as 73 

maximizing economic benefits, minimizing energy curtailment, or, less frequently, reducing 74 

environmental impacts like carbon footprint [11], [15]. Mixed integer programming (MIP) is 75 

a well-established mathematical optimization technique that handles both discrete integer and 76 

continuous variables, making it powerful for complex decision-making problems. However, 77 

it can become cumbersome when addressing the high non-linearities, multiple constraints, 78 

and significant uncertainties often present in microgrid systems, especially in relation to 79 

fluctuating water and energy demands [20]. Moreover, MIP is limited in handling non-80 

stationarity, where parameters and constraints change over time, which often requires 81 

simplifications [20]. Due to these challenges, artificial intelligence (AI) methods have 82 

increasingly been explored as alternatives for optimizing microgrid systems, as AI techniques 83 

can better handle dynamic, uncertain, and complex systems without the need for as many 84 

simplifying assumptions [21]–[25]. Among these, reinforcement learning (RL) methods have 85 

been most widely applied to handle sequential decision-making problems, where an AI agent 86 

learns through trial-and-error interactions with the environment [26]. RL is especially useful 87 

in dynamic and uncertain settings, making it a powerful tool for real-time optimization and 88 

adaptive control in complex systems. Despite the popularity of RL in dynamic optimization 89 

problems, its application in the optimization of energy-water microgrids has been extremely 90 

limited. From the two studies that adopted RL methodologies in this research area, Xu et al. 91 

[20] applied Q-Learning to study the co-optimization of energy and water systems for an 92 

island microgrid and identified the optimal electric water heater operations that resulted in 93 

around 9% reduction in diesel consumption. Similarly, Kofinas et al. [27] used an 94 
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exploration/exploitation technique to optimize the battery usage by controlling the 95 

desalination system. They found the optimal water desalination scheduling that resulted in the 96 

highest water and energy availability. Both studies primarily focused on energy use or 97 

availability as performance metrics, while neglecting the microgrids’ economic and 98 

environmental performances.  99 

 100 

To address these knowledge gaps, we developed a process-based energy-water microgrid 101 

simulation model, which is then combined with a fitted value iteration-based RL algorithm to 102 

identify optimal trajectory of microgrid management decisions considering economic cost, 103 

sustainability, and reliability objectives. Our process-based simulation and RL modeling 104 

framework was tested on an existing off-grid microgrid at the Shoals Marine Laboratory 105 

(SML) on the Appledore Island, Maine. Through this work, we seek to answer the following 106 

research questions: 1) How does the RL management strategy compare to the current 107 

management scenario and a single objective, heuristic management scenario? 2) How does 108 

the RL strategy’s behavior compare to the current and heuristic management scenarios? and 109 

3) How do changes in key water system components impact the optimization outcomes? The 110 

following sections outline the study area and data (Section 2), the development of the 111 

process-based energy-water microgrid simulation model, evaluation metrics, and the RL 112 

optimization algorithms (Section 3), key findings and implications (Section 4), and 113 

conclusions (Section 5). 114 

 115 

2. Study Area and Data Description 116 

Shoals Marine Laboratory (SML) located on Appledore Island, the largest of nine islands in 117 

the Isles of Shoals, is six nautical miles off the east US coast at the border of Maine and New 118 

Hampshire [28]. SML is fully operational for about three months each year, from mid-June to 119 

mid-September. A schematic of SML’s energy and water systems is provided in Figure 1a). 120 

Ongoing investments in the microgrid have led to a 50% reduction in energy usage and a 2% 121 

decrease in diesel consumption compared to 2007 levels. The microgrid currently generates 122 

electricity through 233 solar panels with a total nominal capacity of 68 kW, a Bergey Excel-10 123 

wind turbine with the peak output of 12.6 kW, and two 27-kW diesel generators (operated one 124 

at a time), all supported by an absorbed glass mat (AGM) battery bank with a nominal capacity 125 

of 300 kWh. To extend the battery bank's service life, it is managed with a state-of-charge limit 126 

of 70% to 100%, allowing for a usable storage capacity of 90 kWh. Realtime system operation 127 

data is available through a dashboard and stored on a server for future analysis. More details 128 

related to the SML’s microgrid system can be found in Ghasemi et al. 2023 [28], [29].  129 
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 130 
Figure 1. a) Schematic of the Shoals Marine Laboratory energy-water microgrid; b) the 131 

temporal relationship between the wasted renewable energy and water preparation under the 132 

status-quo; c) the relationships between groundwater, seawater withdrawal and water 133 

demand.  134 

 135 

Water at SML is sourced from both groundwater and seawater desalination via reverse osmosis 136 

(RO). Groundwater is pumped at a rate of approximately 14.5 gallons per minute, based on 137 

pump capacity and hydraulic head, as verified by historical data. The desalination system draws 138 

seawater via an external pump and produces fresh water at a rate of 3-4 gallons per minute 139 

through a commercial-grade RO system [30]. Groundwater and desalinated seawater are 140 

blended and disinfected before storage. Two small peristaltic pumps regulate chlorine addition, 141 

maintaining a chlorine level of 2 ppm. Treated water is stored in a 14,000-gallon underground 142 

cistern tank. From there, water is transferred to a 5,000-gallon pressurized tank, which supplies 143 

water directly to users. The pressurized tank operates within a pressure range of 40 to 160 psi, 144 

corresponding to 20-80% of its total capacity. Water distribution is managed through 145 

automated controls that regulate transfers between the cistern and pressurized tank based on 146 

real-time pressure levels in the pressurized tank. 147 

 148 

The water system's peak electricity load accounted for up to 43% of the microgrid’s average 149 

instantaneous load. Given that groundwater is a less expensive operation, it is typically 150 

prioritized over seawater desalination. However, there is currently no formal protocol 151 

governing the use of these water sources. Instead, the SML manager relies on expert judgment 152 

to decide when to activate the groundwater or desalination systems and how long to operate 153 

them, based on well water levels, energy storage status, and weather conditions. Figure 1b) 154 

presents a 15-day sample of observed operational data, illustrating the significant amount of 155 

unused renewable energy due to limited storage capacity. The timing mismatch between peak 156 

energy generation and peak water demand suggests that surplus renewable energy could be 157 

better utilized for water production, highlighting the potential value of utilizing water system 158 

as a virtual battery to improve system performance.   159 

 160 

We used data from 2022 to investigate the optimal management strategy for the energy-water 161 

microgrid. Minute-by-minute weather, electricity, and water data were sourced from SML's 162 

monitored data, while wind speed data were obtained from the nearby IOSN3 station. We pre-163 
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processed the observed data to address any missing entries, which accounted for less than 1% 164 

of the total records for the selected year. For data gaps shorter than 10 minutes, linear 165 

interpolation was used, filling gaps based on the difference between the last recorded value and 166 

the first available value after the gap. For longer gaps, the missing data were assumed to follow 167 

the trend of the previous day. Figure 1c) shows the monitored daily drinking water production 168 

from both systems and the water demand at SML over the study period. The total water 169 

consumption during the period was 124,529 gallons, averaging 1,354 gallons per day. 170 

 171 

3. Methods 172 

In this section, we first introduce the process-based energy-water microgrid model (Section 173 

3.1). Next, we outline the three performance metrics developed for evaluating the energy-174 

water microgrid (Section 3.2). Lastly, we describe the RL algorithm used to optimize 175 

microgrid management by co-maximizing these performance metrics (Section 3.3).  176 

 177 

3.1 Dynamic Process-Based, Integrated Energy-Water Microgrid Modeling 178 

The process-based energy-water microgrid model was developed in Python V3.11.7 and 179 

operates on a minute-by-minute basis. Figure 2 represents a simplified schema of the model, 180 

which contains two main components: an energy sub-model and a water sub-model. The 181 

energy sub-model simulates wind, solar, and diesel energy supply, alongside energy demand 182 

and balance. Particularly, wind energy output is calculated based on prevailing wind speeds 183 

at each time step, while solar energy is estimated using instantaneous solar radiation and 184 

ambient temperature, following equations from Ren et al. (2020) [31] and Lilienthal (2005) 185 

[32]. Diesel serves as a backup power source, with its operation governed by predefined rules 186 

that consider battery storage levels, energy demand, and renewable energy availability. Any 187 

excess renewable energy is not utilized. Further details on the energy sub-model's operation 188 

can be found in Ghasemi et al [29].  189 

 190 
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  191 
Figure 2. A schematic of the process-based energy-water microgrid simulation model 192 

highlighting the interactions between the energy and the water systems. Variables highlighted 193 

in red are the two main decision variables for the optimized control of the energy-water 194 

microgrid system.  195 

 196 

The water sub-model simulates the processes and energy use associated with groundwater and 197 

seawater intake, treatment, and distribution. The energy uses for these unit processes are 198 

determined by the activation of their respective pumps and corresponding flow rates. When a 199 

pump is operating, its energy consumption is calculated as the product of its activation and 200 

power rating per minute [33]. To enhance the utilization of surplus renewable energy and 201 

conserve groundwater for system resilience, a groundwater recharge mechanism was added to 202 

the model. When both the cistern and pressurized tanks reach their maximum operational 203 

capacities and surplus renewable energy is available, the excess renewable energy is used to 204 

desalinate water, which is then diverted to recharge the groundwater well. To model changes 205 

in the groundwater well level, a “bathtub” model was developed as a simplified representation 206 

of the island’s watershed. This model conceptualizes the watershed as a rectangular storage 207 

tank (Figure 3a)). The tank is replenished by precipitation and groundwater recharge and 208 

depleted through groundwater withdrawal. The volume of water stored in the watershed can be 209 

calculated using Eq. 1.  210 
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 211 
∆𝐻𝑡  ×  𝐴𝑤 = 𝐺𝑟𝑜𝑢𝑛𝑑𝑤𝑎𝑡𝑒𝑟 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑡  +  𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑡  −  𝐺𝑟𝑜𝑢𝑛𝑑𝑤𝑎𝑡𝑒𝑟 𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙𝑡        Eq. 1 212 

 213 

 214 
Figure 3. a) A conceptual island watershed stock and flow model adopted in this study. Aw is 215 

defined as the hypothetical catchment area of the watershed and ΔHt is the instantaneous well 216 

water change. b) The observed and simulated well water level during both calibration and 217 

validation periods. 218 

 219 

Based on observed groundwater level, groundwater withdrawal, and precipitation data from 220 

the island, we calibrated the watershed area, 𝐴𝑤, which is subsequnetly used for predicting 221 

groundwater depth. Groundwater level was monitored over a span of 59 days between June 222 

25 and August 23, 2022. Approximately 50 days of this data were used for model calibration, 223 

while the remaining 9 days were used for validation. The hypothetical catchment area was 224 

varied systematically from 1 to 1,500 square feet, with increments of 1 square foot. The 225 

calibration accuracy was assessed using Mean Squared Error (MSE) and R2 values. The 226 

optimal catchment area, 𝐴𝑤 =1097 ft², was identified, resulting in an MSE of 1.6 in² and an 227 

R² of 96.94%. Validation over the remaining 15% of the data yielded an MSE of 1.16 in² and 228 

an R² of 71.80%. Figure 3b) illustrates the comparison between observed and simulated 229 

groundwater levels for both calibration and validation periods.  230 

 231 

3.2 Energy-Water Microgrid Evaluation Metrics 232 

We defined three criteria to evaluate the performance of the energy-water microgrid, 233 

calculated as cost, sustainability, and reliability scores.  234 

 235 

Cost score represents the economic cost associated with the operation of the energy-water 236 

microgrid. It is calculated as a ratio between the instantaneous cost at each time step and the 237 

maximum possible cost in a single time step. The instantaneous cost includes the cost of 238 

diesel consumed in diesel generator, the opportunity cost related to the wasted renewables 239 

calculated as surplus energy, and the energy infrastructure depreciation cost. Eq. 1 shows the 240 

calculation of the cost score.  241 

 242 

𝐶𝑜𝑠𝑡 𝑆𝑐𝑜𝑟𝑒𝑎,𝑡 = 1 −
(𝐸𝐺𝑟𝑖𝑑,𝑡+𝐸𝑅𝑂,𝑎,𝑡+𝐸𝑊𝑒𝑙𝑙,𝑎,𝑡)∗𝑓∗𝑃𝐷𝑖𝑒𝑠𝑒𝑙∗𝑆𝐷𝑖𝑒𝑠𝑒𝑙,𝑡+𝐸𝑊𝑎𝑠𝑡𝑒,𝑡∗𝑓∗𝑃𝐷𝑖𝑒𝑠𝑒𝑙+∑ 𝐶𝑑𝑚,𝑎,𝑡𝑚

𝐶𝑀𝑎𝑥
      Eq. 2 243 

 244 

where a is the index of the action taken in the time step t (a vector of well pump and RO 245 

switches); 𝐸𝑅𝑂,𝑎 ,𝑡 is the energy consumption of the RO system at time t given the switch 246 

states defined by vector a. 𝐸𝑊𝑒𝑙𝑙,𝑎,𝑡 is the energy consumption of the well pump at time t 247 

given the switch state a. 𝐸𝐺𝑟𝑖𝑑,𝑡 is any other energy consumptions at SML at time t. 𝑃𝐷𝑖𝑒𝑠𝑒𝑙 248 

represents the average diesel price over the study period, which is estimated to be $5.39 per 249 

gallon. 𝑆𝐷𝑖𝑒𝑠𝑒𝑙,𝑡 indicates whether the energy is supplied by diesel at time t, 0 indicating that 250 
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the diesel generator is off, and 1 indicating the diesel generator is on. 𝐸𝑊𝑎𝑠𝑡𝑒,𝑡 is the amount 251 

of waste renewable energy at time t. 𝑓 is the conversion factor, 0.0903 gallons of diesel/kWh 252 

of electricity [34]. The opportunity cost is included to minimize energy waste. We assumed 253 

that the unit cost of waste energy is the same as diesel price in our analysis. m is the index of 254 

each system component. ∑ 𝐶𝑑𝑚,𝑎,𝑡𝑚  is the total depreciation cost of all system components m, 255 

as a function of well pump and RO operation switches 𝑎, including battery storage, PV 256 

panels, diesel generator, RO system including filters, and water pumps, calculated based on 257 

asset price of the parts (see the SI for asset price details). Depreciation was calculated using 258 

straight-line method with a salvage value of zero [35]. Depreciation only occurs when the 259 

unit infrastructure is in operation. Finally, 𝐶𝑀𝑎𝑥 is calculated based on the maximum cost in a 260 

single step based on asset prices of components and the observed economic cost data. The 261 

maximum cost utilized in this study is $0.97 per minute.  262 

 263 

Sustainability score represents the sustainability of SML’s energy-water microgrid using 264 

carbon emissions as a surrogate measure. It is calculated as a ratio between the instantaneous 265 

carbon emissions at each time step and the maximum possible carbon emissions in a single 266 

time step. Instantaneous carbon emissions include emissions associated with diesel consumed 267 

in diesel generator, the opportunity emissions related to the waste energy, and the carbon 268 

emissions associated with infrastructure construction and maintenance. Eq. 2 presents the 269 

numerical calculation of the sustainability score.   270 

 271 

𝑆𝑢𝑠𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒𝑎,𝑡 = 1 −
(𝐸𝐺𝑟𝑖𝑑,𝑡+𝐸𝑅𝑂,𝑎,𝑡+𝐸𝑊𝑒𝑙𝑙,𝑎,𝑡)∗𝑓∗𝐶𝐹𝐷𝑖𝑒𝑠𝑒𝑙∗𝑆𝐷𝑖𝑒𝑠𝑒𝑙+𝐸𝑊𝑎𝑠𝑡𝑒∗𝑓∗𝐶𝐹𝐷𝑖𝑒𝑠𝑒𝑙+∑ 𝐶𝐹𝑚,𝑎,𝑡𝑚

𝐶𝐹𝑀𝑎𝑥
      Eq. 3 272 

 273 

where 𝐶𝐹𝐷𝑖𝑒𝑠𝑒𝑙 is the carbon emissions associated with unit diesel consumption, 1.19 kg 274 

CO2e/kWh. ∑ 𝐶𝐹𝑚,𝑎,𝑡𝑚  is the carbon emissions of all system components m, as a function of 275 

well pump and RO operation switches 𝑎 (see SI for carbon emission details of each microgrid 276 

component). Finally, 𝐶𝐹𝑀𝑎𝑥 is the maximum possible carbon emission value in a single step. 277 

We estimated the carbon footprint of each system component using the SimaPro 9.5.0.2 with 278 

IPCC 2021 GWP100 method. Details of the carbon emission estimations can be found in the 279 

SI. The maximum sustainability value utilized in this study is 2.49 kg CO2e per minute.  280 

 281 

Reliability score represents the reliability of SML’s freshwater reserve using the groundwater 282 

well depth as a surrogate metric. It is calculated as a ratio between the well’s instantaneous 283 

water availability and the maximum water availability. Instantaneous water availability is 284 

estimated as the difference between the current and the lowest possible water level at each 285 

time step. The maximum water availability is estimated as the difference between the highest 286 

possible and the lowest possible water levels. Eq. 4 captures the calculation of the reliability 287 

score.  288 

 289 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒𝑎,𝑡 =
𝐻𝑊𝑒𝑙𝑙,𝑡−𝐻𝐿𝑜𝑤

𝐻𝐻𝑖𝑔ℎ−𝐻𝐿𝑜𝑤
       Eq. 4 290 

 291 

where 𝐻𝐿𝑜𝑤 and 𝐻𝐻𝑖𝑔ℎ are the maximum and minimum possible well water level measured 292 

from the well bottom, set at 100 inches and 250 inches respectively based on historical 293 

observed data. 𝐻𝑊𝑒𝑙𝑙,𝑡 is the instantaneous well water level in each time step, which is an 294 

output of the simulation model. 295 

 296 
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3.3 Reinforcement Learning 297 

3.3.1 Dynamic Programming 298 

Reinforcement Learning (RL) is a method where a machine learns the best action through 299 

interaction with its environment [36]. Here the RL algorithm trains a virtual agent, which 300 

interacts with the simulation model described in Section 3.1 and makes management 301 

decisions about the energy-water microgrid to achieve the highest possible reward. The 302 

reward is the immediate feedback of the system that indicates the immediate benefit resulting 303 

from the agent’s action [36]. A simple reward can be defined as a composite score based on 304 

the cost, sustainability, and reliability scores described in Section 3.2 using Eq. 5.  305 

 306 

{
𝑟(𝑠, 𝑎)𝑡 = 𝑐 × 𝐶𝑜𝑠𝑡 𝑆𝑐𝑜𝑟𝑒𝑎,𝑡 + 𝑠 × 𝑆𝑢𝑠𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒𝑎,𝑡 + 𝑟 × 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒𝑎,𝑡 − 𝜆

𝑐 + 𝑠 + 𝑟 = 1
      Eq. 5 307 

 308 

where 𝑐, 𝑠, 𝑎𝑛𝑑 𝑟 are the weighting factors that can be defined based on the stakeholders’ 309 

interests. In this study, we first defined the three scores as equal weighted, and then 310 

conducted sensitivity studies on the weighting. 𝜆 is defined as a penalty term to penalize the 311 

agent for violating the constraints. The agent receives penalties based on the severity of each 312 

constraint violation, such as insufficient water supply, over-topping or overusing the well, 313 

running the water system while the energy system relies on diesel generation, and draining 314 

the battery when renewable energy is inadequate. The penalty term also provides feedback to 315 

discourage rapid switch changes that occur in less than 5 minutes to avoid water pump and 316 

desalination system damage. 317 

 318 

In complex systems such as the microgrid system of study, actions impact not only the 319 

immediate time step but also the future time steps [36]. Therefore, our RL algorithm seeks to 320 

maximize both immediate and future rewards. We use “Value” to indicate the discounted sum 321 

of immediate and future rewards, which can be calculated using Eq. 6.   322 

 323 

𝑉𝑡(𝑠𝑡;  𝑎𝑡 , … , 𝑎𝑇−1) =  ∑ 𝛾𝑘−𝑡  𝑟𝑘(𝑠𝑘 , 𝑎𝑘)𝑇−1
𝑘=𝑡 +  𝑟𝑇(𝑠𝑇),    𝑠 ∈ 𝑆, 𝑎𝑛𝑑 𝑡 ∈ {1, . . , 𝑇}      Eq. 6 324 

 325 

where 𝑉𝑡(𝑠𝑡;  𝑎𝑡, … , 𝑎𝑇−1)  is the Value at time 𝑡, and 𝑟𝑘(𝑠𝑘, 𝑎𝑘)  is the immediate reward at 326 

time step 𝑘, iterating from time steps t to T-1, under system state 𝑠𝑘  and management action 327 

𝑎𝑘 [36]. 𝛾 is the discount factor that calculates the present value of the future rewards. To 328 

ensure a sufficiently forward-looking assessment of rewards, we established a 𝛾 value of 329 

0.9993. This allows the agent to factor in consequences up to one day ahead. In this work, the 330 

agent makes decisions in each minute in 92 days of simulation, which equals a total of 331 

132,480 steps. 332 

 333 

The management decisions made by the agent are whether to activate or deactivate the RO 334 

and the groundwater intake systems. Thus, the action space comprises four finite options: 335 

activating both systems, deactivating both systems, and activating one while deactivating the 336 

other. These decisions are made based on the “state” of the energy-water microgrid of study. 337 

In RL, a state refers to a specific configuration or situation that the agent perceives in its 338 

environment at a given point of time [36]. In this study, system state is captured through 12 339 

variables/state features. Six of these state features are exogenous variables, including solar 340 

irradiation, wind speed, temperature, precipitation, water demand, and energy demand. The 341 

remaining six state features are endogenous, including diesel generator status, cistern pump 342 

switch, battery state of charge, pressure tank level, cistern tank level, and well depth. Table 1 343 

details all 12 state features and their respective ranges. 344 

 345 
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Table 1. Energy water microgrid model’s actions and state features 346 
Type Denotation Variables Range Scores involved Notes 

Decision 

Variables 

RO RO Switch 0 or 1 All three scores 
0 considers as “Off” and 1 

considered as “On” 

Well Well Switch 0 or 1 All three scores 
0 considers as “Off” and 1 

considered as “On” 

S
ta

te
s 

E
n

d
o
g

en
o

u
s 

t Time step 
0 ≤ ℕ ≤ 

132,479 
All three scores 

92 days of operation in 

minute resolution 

Ф𝟏 Generator status 0 or 1 
Cost and 

Sustainability Scores 

0 considers as “Off” and 1 

considered as “On” 

Ф𝟐 
Cistern pump 

status 
0 or 1 

Cost and 

Sustainability Scores 

0 considers as “Off” and 1 

considered as “On” 

Ф𝟑 
Battery state of 

charge 

70 ≤ ℝ 

≤100 

Cost and 

Sustainability Scores 

The range is determined 

based on the current 

operation rule of the SML 

Ф𝟒 
Pressure tank 

level 

0 ≤ ℝ ≤ 

5,000 
Reliability Score In the unit of gallons 

Ф𝟓 Cistern tank level 
0 ≤ ℝ ≤ 

1,4000 
Reliability Score In the unit of gallons 

Ф𝟔 Well depth 0 ≤ ℝ Reliability Score In the unit of inches 

E
x

o
g

en
o

u
s 

Ф𝟕 Solar GHI 0 ≤ ℝ 
Cost and 

Sustainability Scores 
In the unit of W/s2 

Ф𝟖 Wind speed 0 ≤ ℝ 
Cost and 

Sustainability Scores 
In the unit of m/s 

Ф𝟗 
Ambient 

temperature 
ℝ 

Cost and 

Sustainability Scores 

In the unit of degree 

Celsius 

Ф𝟏𝟎 Energy demand 0 ≤ ℝ 
Cost and 

Sustainability Scores 

Instantaneous electricity 

load in the unit of kW 

Ф11 Water demand 0 ≤ ℝ Reliability Score 

Instantaneous water 

demand in the unit of 

gallons 

Ф12 Precipitation 0 ≤ ℝ Reliability Score In the unit of inches 

 347 

3.3.2 Fitted Value Iteration 348 

In tabular RL, the training process typically involves presenting all feasible states and actions 349 

to an agent, and then determining the exact optimal action for each state based on its highest 350 

achievable Value. Given the large number of time steps (132,480 steps) and system states 351 

(combinations of 12 states) and a small action space (4 actions) involved in this study, we 352 

have opted to utilize a modified RL method called Fitted Value Iteration (FVI) to achieve the 353 

optimization purpose. FVI is particularly suited for the present study because it can predict 354 

the Value of sampled states in a continuous state space over a foreseeable time horizon by 355 

exhausting a small action space. FVI is comprised of two steps: 1) agent training and 2) 356 

calculating the optimal control sequence.  357 

 358 

a) Agent training  359 

To train the agent, FVI starts from the last time step and goes backward to estimate the 360 

Values. In each time step, the agent provides a sample size n for each state feature Ф�̂�, 𝑖 =361 

1, … ,12. The maximum Value out of the four possible actions for each sample is calculated 362 

using Eq. 7.  363 

 364 

�̂�∗
𝑡( ŝ𝑡) = max

𝑎∈𝐴
[𝑟𝑡(𝑎,  ŝ𝑡) + 𝛾 �̃�∗

𝑡+1(𝑓(𝑎,  ŝ𝑡))] 365 

 ŝ = [Ф1̂, … , Ф12̂],  ŝ𝑡+1 = 𝑓(𝑎,  ŝ𝑡), 𝛾𝜖[0,1]     Eq. 7 366 

 367 

where �̂�∗
𝑡( ŝ𝑡) is the highest achievable Value of the sampled state 𝑠�̂� at time step t; 𝑠�̂� is a 368 

vector of one sampled state comprised of 12 state features of Ф1̂ through Ф12̂; 𝑎 is the action 369 

within the action space A; f is the transition function that transits the state  ŝ from time t to t+1 370 

considering action a; and 𝛾 is the discount factor that calculates the present Value of the 371 



11 
 

future rewards. The algorithm uses a predictive model generated in the previous step, 372 

�̃�∗
𝑡+1(𝑓(𝑎, 𝑠�̂�)), to estimate the future rewards (more specifically the Value for the next time 373 

step). The transition function 𝑓(𝑎, 𝑠�̂�) is a part of the process-based simulation model that 374 

takes one state (a vector of state features �̂�) and action 𝑎 at any given time step and defines 375 

the next state. For time T, agent’s achievement is associated with the instantaneous reward as 376 

there is no future rewards in the last time step. This sampling process significantly reduces 377 

computing time as it prevents the need for an exhaustive search.  378 

 379 

Using the samples selected from each time step, the FVI algorithm fits a model that predicts 380 

the maximum Value based on the current system states, �̃�∗
𝑡+1(𝑓(𝑎, ŝ)). The algorithm 381 

originally took a linear regression method and stores the coefficients using Eq. 8.  382 

 383 

�̃�𝑡=𝑇 , 𝛽𝑡=𝑇 ← arg min�̃�𝑡,�̃�𝑡
∑ (�̂�∗

𝑡=𝑇
(�̂�𝑖) − (�̂�𝑖

𝘛�̃�𝑡 + 𝛽𝑡))2𝑛
𝑖=1       Eq. 8 384 

 385 

where �̃�𝑡=𝑇 and 𝛽𝑡=𝑇 are the coefficients of the linear regression at time step 𝑇 and �̂�𝑖
𝘛 is the 386 

transposition of the ith sampled state vector �̂�𝑖. The output of this step is 𝑇 number of 387 

predictive models that each of them predicts the maximum achievable future rewards (�̃�∗
𝑡) 388 

associated with any state. 389 

 390 

Due to the high computational burden of the training step, we made a few simplifications. We 391 

trained the predictive model based on a large sample size, n = 2.6 million, while sampling 392 

uniformly for all time steps (T=132,480) for 20 times (n = 20 × 132,480=2.6 million) to 393 

include diversity in time dependent state features, for instance, to include both days and 394 

nights. The sampling strategy is explained in Section 3.3.3 These samples were used to train 395 

one comprehensive predictive model �̃�∗(�̂�). We used an Artificial Neural Network (ANN) 396 

model with three layers (32, 64 and 32 neurons, respectively) to train a model predicting 397 

maximum achievable reward �̃�∗ based on the sampled states �̂�. A weight decay of 0.01 was 398 

considered to lower the chance of overfitting (see the SI for details). We ran the training 399 

process 100 times considering each time with a new set of sampled states of n = 2.6 million 400 

and selected the best performing ANN model that gives the best composite score in Eq. 5. 401 

This trained model was then used in all the time steps with a time discount factor as indicated 402 

in Eq. 9. 403 

 404 

�̃�𝑡
∗
(�̂�) = �̃�∗(�̂�) ×

1−𝛾(𝑇−𝑡+1)

1−𝛾
        Eq. 9 405 

 406 

where �̃�𝑡
∗
(�̂�) is the time discounted maximum Value. �̃�∗(�̂�) is the predicted maximum reward 407 

for each sample based on system state using the ANN model.  408 

 409 

b) Calculate the optimal control sequence 410 

Once the predictive model for the maximum Value in each time step is determined, the 411 

algorithm starts from initial time t=0 to find the best action that results in the optimal Value. 412 

The system states associated with the initial time step was obtained from the observed data at 413 

06/01/2022 00:00. The agent then utilizes the observed exogenous state values, and the 414 

process-based model simulated endogenous states to determine the optimal control sequence 415 

for the next time step. In each time step, the agent finds the optimal action (𝑎𝑡
∗) considering 416 

both immediate and future rewards using Eq. 10. The algorithm is executed for all ANN 417 

models trained in 100 iterations to obtain the optimal control sequences.  418 

 419 

{
𝑎𝑡

∗ = arg 𝑚𝑎𝑥𝑎∈𝐴[𝑟𝑡(𝑎, St) + 𝛾 �̃�𝑡+1
∗ (𝑓(𝑎, 𝑆𝑡)] ,    𝑡 = 0 , … , 𝑇 − 1

𝑎𝑇
∗ =  arg 𝑚𝑎𝑥𝑎∈𝐴[𝑟𝑇(𝑎, ST)] ,                                             𝑡 = 𝑇

       Eq. 10 420 
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 421 

For each ANN model, the final output of the algorithm is a sequence of optimal management 422 

actions associated with each time step t, referred to as the optimal control sequence: 423 

𝑎1
∗ , 𝑎2

∗ , 𝑎3
∗ , … , 𝑎𝑇

∗ . Once the optimal control sequence was obtained, we compared the 424 

outcomes of the RL with the status-quo of system operation in the study period.  425 

 426 

3.3.3 Stochasticity of the State Features 427 

To enhance the predictive capability and account for stochastic variability in the FVI model 428 

beyond historical climate patterns, we developed a separate algorithm for generating 429 

exogenous states. We utilized five years of historical climate data to generate stochastic 430 

values for wind speed, global horizontal irradiance (GHI), and air temperature. This data was 431 

reformatted into 92-day segments, with each day featuring five distinct 24-hour weather 432 

patterns. For GHI and temperature, we first identify the specific day over the 92-day period, 433 

and then randomly select one out of five patterns associated with the day. Wind speed and 434 

precipitation, however, are sampled randomly from the entire pool of 92×5 days of observed 435 

data. The availability of historical water and energy demand data is limited. To address this, 436 

we assume that these demands vary based on the time of day and are influenced by previous 437 

and subsequent demand values. We model the probability of water and energy demand 438 

occurring as a normal distribution for the 30 minutes before and after each time step. For 439 

each time step, we calculate the mean and standard deviation of demands within a 1-hour 440 

window surrounding the time step. Using these parameters, we generate random demand 441 

values from a normal distribution. Endogenous states, on the other hand, are sampled 442 

randomly using a uniform function within the specified ranges outlined in Table 1. 443 

 444 

4 Results and Discussion 445 

4.1 Performance Comparison of the RL, Status-Quo, and Heuristic Scenarios 446 

Figure 4 compares the performance of the RL scenario with the status quo and a heuristic 447 

scenario. The status quo reflects the current manual operations of SML, while the heuristic 448 

scenario represents a single-objective approach common in microgrid management, focused 449 

solely on maximizing renewable energy utilization. In the heuristic scenario, the water system 450 

is activated whenever surplus renewable energy is available. Both groundwater and seawater 451 

desalination systems are used to fill the cistern and pressurized tanks. Once these tanks reach 452 

capacity, only seawater desalination is employed for recharging the groundwater well. 453 

 454 

Compared to the status quo, the RL scenario enhanced all three scores, achieving 455 

approximately 0.60% improvement in cost, 0.44% in sustainability, and 20.08% in reliability 456 

scores, resulting in a 7.04% improvement in the overall weighted total score. These 457 

improvements translate to a $771.03 saving in economic cost, a 1.45 Mg reduction of CO2e 458 

emissions, and an average increase of 28 inches in groundwater level over the 92-day study 459 

period. Our results indicate that the current operations have attained high performance levels 460 

in terms of sustainability and cost, leaving limited room for further refinement. The most 461 

significant improvements are observed in the reliability score. From an energy consumption 462 

perspective, the RL scenario achieved a 1.64% reduction in diesel consumption and a 38.84% 463 

reduction in wasted renewable energy. This translates to a diesel saving of 56 kWh and an 464 

increased renewable energy utilization of 1,608 kWh - equivalent to a virtual battery capacity 465 

of 17.5 kWh per day, or 23.3% of the current storage capacity. It is worth noting that the RL 466 

scenario results in higher total energy consumption compared to the status quo. This increase 467 

arises from the RL algorithm’s deliberate use of groundwater recharge to improve system 468 

reliability, a strategy not utilized in the status quo operations. This approach balances 469 

increased energy consumption with significant gains in reliability and reduced wastage, 470 

demonstrating the RL’s effectiveness in enhancing overall system performance.  471 
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 472 

Compared to the heuristic scenario, the RL scenario presents a 10% increase in the weighted 473 

total score. Specifically, the RL approach enhances the cost score by 0.16%, translating to a 474 

saving of $205.61, and achieves a substantial 30.08% improvement in reliability, increasing 475 

the groundwater level by 42.11 inches. The RL scenario also outperforms the heuristic 476 

scenario in renewable energy utilization by 33% (1,248 kWh). Nevertheless, the RL scenario 477 

results in a 0.18% lower sustainability score as compared to the heuristic policy (594 kg of 478 

CO2e), as well as a 16.86% higher diesel consumption (484 kWh). This suggests that while a 479 

single-objective policy focused solely on renewable energy utilization can still achieve 480 

significant diesel reductions, it does so at the expense of groundwater reliability. Notably, the 481 

large diesel reduction in the heuristic policy does not correspond to an equally significant 482 

sustainability score improvement, mainly due to additional carbon emission factors 483 

considered in the sustainability score. This underscores the limitations of single-objective, 484 

use-phase-focused optimizations, which may overlook the broader life cycle impacts of the 485 

solutions being evaluated, resulting in sub-optimization. 486 

 487 

 488 
Figure 4. Comparison of the RL optimized energy-water microgrid management solution and 489 

the status quo. Yellow bars indicate the RL-optimized solution, while the blue bars indicate 490 

the status quo.  491 

 492 

4.2 Behavior Comparison of the RL, Status-Quo, and Heuristic Scenarios 493 

Figure 5 compares the temporal trends in cistern tank water levels, groundwater well levels, 494 

cumulative diesel energy consumption, cumulative wasted energy, and daily renewable 495 

energy utilization across the RL, status quo, and heuristic scenarios. The RL scenario 496 

consistently maintains the cistern tank at its maximum capacity (Fig. 5a)), contrasting with 497 

the status quo and heuristic approaches. This indicates that the RL scenario prioritizes 498 

maximizing the use of water tanks and groundwater recharge to optimize renewable energy 499 

utilization, with groundwater recharge occurring only after both the cistern and pressurized 500 

tanks reach full capacity. Notably, the status quo approach intentionally depletes the cistern 501 

tank toward the end of the season (approximately the final two weeks), a trend not observed 502 

in the RL and heuristic scenarios.  503 

 504 

The groundwater level is better preserved in the RL scenario compared to both the status quo 505 

and the heuristic scenario (Figure 5b)). During periods of higher water demand, particularly 506 

from mid-July to mid-August, the likelihood of groundwater recharge under the RL scenario 507 

decreases, resulting in a reduced groundwater preservation benefit during this time. The 508 

heuristic approach, in particular, underperforms in maintaining groundwater levels, even 509 
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relative to the status quo. This is because groundwater is more frequently withdrawn to fill 510 

water tanks in order to utilize excess renewable energy.   511 

 512 

A closer look at cumulative diesel generation (Figure 5c) and wasted renewable energy 513 

(Figure 5d) reveals that the RL scenario prioritizes minimizing wasted renewable energy over 514 

reducing diesel consumption to gain a higher overall reward. Figure 5e) further examines the 515 

RL model's behavior on a typical day, highlighting its strategy to achieve this goal. 516 

Compared to the status quo and heuristic scenarios, the RL scenario is the last to reach 517 

battery curtailment, as indicated by the first drop in Figure 5e). This suggests that the RL 518 

model strategically uses the water system earlier in the day to "store" excess renewable 519 

energy, ensuring that the water pumping rate does not become a limiting factor for renewable 520 

energy utilization. In contrast, the heuristic scenario prioritizes charging the battery first, 521 

using the water system as a "virtual battery" only after the battery is fully charged. However, 522 

once the battery reaches capacity during peak renewable energy generation, the amount of 523 

excess energy that can be utilized by the water system is constrained by its pumping capacity, 524 

which explains the heuristic scenario’s overall lower renewable energy utilization as 525 

compared to the RL scenario. The status quo, on the other hand, operates on a water-demand-526 

driven model without actively charging the battery or water tanks to maximize renewable 527 

energy use. As such, battery curtailment is reached later in the day compared to the heuristic 528 

scenario. Furthermore, the RO system activation in the status quo is delayed due to manual 529 

operation, as evidenced by the plateau following the initial curtailment in the blue line, 530 

further limiting excess renewable energy utilization.  531 

 532 

This analysis highlights the RL model's strategic decision-making, which reserves battery 533 

storage for later in the day when renewable energy generation peaks. By allowing the water 534 

system to run for longer periods, the RL approach effectively circumvents the pumping 535 

capacity limitations, optimizing the water system as a virtual battery. These actions 536 

demonstrate how a carefully calculated, risk-taking approach can lead to greater overall 537 

system benefits.   538 

 539 
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 540 
Figure 5. Comparison of the temporal trends in a) cistern tank water level, b) groundwater 541 

well water level, c) cumulative diesel energy consumption, d) cumulative wasted energy, and 542 

e) daily pattern of renewable energy utilization across RL, status quo, and heuristic solutions. 543 

The blue background bars in b) show the daily water demand throughout the simulation, 544 

while the green background bars in c) and d) show the daily renewable energy generation.  545 

 546 

4.3 The Influence of Tank Size and Desalination Rate on the RL Solution 547 

Figure 6 presents the three performance scores - cost, sustainability, and reliability - as well 548 

as the weighted total scores under various cistern tank sizes and desalination rates, to assess 549 

how system design impacts the outcomes of the RL solutions. Three reverse osmosis (RO) 550 

desalination rates were examined (2, 3, and 4 gallons per minute), using energy consumption 551 

rates obtained from field measurements [33]. The cistern tank capacity was also varied, 552 

ranging from 6,000 to 20,000 gallons in increments of 2,000 gallons. Overall, increasing the 553 

desalination rate consistently improves all three performance scores. A higher desalination 554 

rate enables greater utilization of excess renewable energy, reduces diesel consumption, and 555 

enhances groundwater recharge due to more frequent well recharging. These benefits 556 

outweigh the potential "costs" associated with operating a larger desalination system. 557 

Increasing cistern tank size, on the other hand, will slightly reduce cost and sustainability 558 

scores because of the higher utilization of well pump to maintain the cistern tank at its 559 

maximum level. It has a slight benefit to reliability score as groundwater is used less with a 560 

larger tank size.  561 
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 562 

 563 
Figure 6. The influence of cistern tank size and desalination rate on the performance of the 564 

RL-optimized solutions  565 

 566 

4.4 The Influence of Performance Metric Weightings on the RL-Optimized Solution 567 

To explore the impact of performance metric weightings on the RL-optimized solutions, we 568 

systematically varied each score's weight from 0 to 1 (0, 1/3, and 1) while keeping the other 569 

weights equal, ensuring the sum of the weights remained 1. Each variation was tested 100 570 

times with different samples, and the model with the highest total score for each scenario was 571 

selected. Figure 10 illustrates the changes in the three performance scores as their respective 572 

weights are adjusted. Overall, the reliability score is the most sensitive to changes in 573 

weighting, while the cost and sustainability scores show relative stability with only minor 574 

improvements. This suggests the microgrid has limited room for further improvement in 575 

terms of cost and sustainability. For example, increasing the cost score weight from 0 to 1 576 

results in a marginal increase in the score, from 97.07% to 97.11%, leading to cost savings 577 

between $771.0 and $822.4 over one season compared to the status quo. Similarly, changing 578 

the sustainability score weight from 0 to 1 improves the sustainability score from 95.53% to 579 

95.76%, equating to carbon savings of 1,121.6 to 1,880.3 kg CO2e per season. The reliability 580 

score shows a more pronounced and consistent improvement with increasing weight, rising 581 

from 55.85% to 78.27%, which corresponds to an increase in the average groundwater level 582 

from 6 to 37 inches. These findings highlight that while the cost and sustainability scores are 583 

relatively robust to changes in their weightings, the reliability score is more responsive to 584 

variations, indicating that weighting adjustments significantly affect groundwater 585 

preservation performance. 586 

 587 
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 588 
Figure 7. Sensitivity analysis results showing the influence of the weightings of the 589 

performance metrics on the RL outcomes.  590 

 591 

5. Conclusions 592 

This study investigated the cost, sustainability and reliability of an island energy-water 593 

microgrid through optimized scheduling of the water system to function as a virtual battery. 594 

A process-based dynamic model was developed to simulate the physical water and energy 595 

interactions, which was then combined with a reinforcement learning (RL) model for system 596 

optimization. Our findings reveal that the RL scenario outperformed the status quo, achieving 597 

improvements of approximately 0.60% in cost, 0.44% in sustainability, and a significant 598 

20.08% in reliability, leading to a 7.04% increase in the overall weighted total score. 599 
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Additionally, the RL scenario demonstrated superior cost and reliability performances 600 

compared to a single-objective, heuristic scenario, albeit with a slight trade-off in 601 

sustainability. This highlights the inherent limitations of single-objective, use-phase-focused 602 

optimizations, which often fail to account for broader life cycle impacts, resulting in 603 

suboptimal solutions. A deeper analysis of model behaviors shows that the RL model makes 604 

strategic decisions by reserving battery storage for times of peak renewable energy generation 605 

later in the day. By operating the water system for extended periods, the RL approach 606 

effectively bypasses pumping capacity constraints, treating the water system as a virtual 607 

battery. These riskier strategies, which human operators might be reluctant to pursue, 608 

demonstrate how a well-calculated, risk-taking model can deliver superior system-wide 609 

benefits. Furthermore, our analysis suggests that increasing the desalination rate could lead to 610 

even greater improvements across all three performance metrics, whereas enlarging the water 611 

tank size yields only marginal gains.  612 

 613 

The findings from this study highlight the critical role of optimized energy utilization, 614 

strategic planning, and tailored solutions in enhancing the efficiency, reliability, and 615 

sustainability of integrated energy-water microgrid systems. By demonstrating the long-term 616 

savings achievable through the optimal use of water as a virtual battery, these results can 617 

guide decision-makers in balancing trade-offs and benefits to improve system design, 618 

resource allocation, and emergency preparedness. The successful deployment of RL in this 619 

study offers a flexible model for similar microgrids in small islands or remote communities, 620 

promoting the adoption of AI-driven automation and fostering widespread system 621 

performance improvements. Future research could expand the RL model to incorporate 622 

energy system decisions and actions, such as diesel generator switching, alongside water 623 

system scheduling. This broader decision space would create a more comprehensive 624 

framework for optimizing the management of water-energy microgrids. 625 
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